If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+4k=3
We move all terms to the left:
7k^2+4k-(3)=0
a = 7; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·7·(-3)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-10}{2*7}=\frac{-14}{14} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+10}{2*7}=\frac{6}{14} =3/7 $
| 2/3x-10=1/2x-2 | | 3(2-y)=33 | | 6m-3m+18=54 | | (4h+8)=3h+6 | | 9/n-7n/18=1/9 | | 6z-8+z=9+2z+13 | | −6(x−4)−25=−1 | | 12x+10-6=28 | | 170-u=241 | | 17-5q=4q-10-12q | | 12(10x+30)=5x+15 | | -q+7-16q=-11-18q | | 2x+4+8x=14 | | 3m=4m-7 | | 3.1+10m=6.92 | | 4x-5x=2x+25 | | 179-y=283 | | 9+7x=8x+2x | | 280=237-y | | -10-2k=3k | | 9f-5=8 | | (x+6)3=-10 | | 6b+3=-9 | | -20+y=20-7y | | 183=-w+242 | | 227=-v+114 | | 4(6-3x)=2(-6x+12) | | 5x+2+3x-6=12 | | 4^(-3x)=39 | | 52-u=291 | | 11x-9x=18 | | 12-4c=4 |